Intrinsic Superhydrophilicity of Titania-Terminated Surfaces

نویسندگان

  • Seiji Kawasaki
  • Eero Holmström
  • Ryota Takahashi
  • Peter Spijker
  • Adam S. Foster
  • Hiroshi Onishi
  • Mikk Lippmaa
چکیده

The wettability of solid surfaces is of fundamental scientific interest and related to many diverse chemical and physical phenomena at the heart of practical technologies. In particular, the hydrophilicity of the photocatalytically active metal-oxide TiO2 has attracted considerable attention for many applications. However, the intrinsic hydrophilicity of Ti-oxide surfaces is not fully understood. In this work, we investigate the intrinsic hydrophilicity of Tioxide surfaces on the atomically stable (√13 × √13)-R33.7° SrTiO3 (001) surface. The surface has a TiOx double layer on a TiO2-terminated SrTiO3 (001) surface, which is available as a surface marker to assess the atomic-scale structural stability of the surface. Both experimental and theoretical results show that Ti-oxide surfaces are intrinsically superhydrophilic with a water contact angle of ∼0°. The results show that airborne surface contamination is the most significant factor affecting the wettability of titania surfaces, strongly supporting the contamination model for explaining the mechanism of photoinduced superhydrophilicity observed on titanate surfaces. We emphasize that the effect of airborne contamination has to be carefully evaluated when investigating the wettability of surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Durable superhydrophilic/phobic surfaces based on green patina with corrosion resistance.

Special wetting surfaces with superhydrophilicity or superhydrophobicity have attracted great interest because of their potential for practical applications. However, since the special wetting surface may be used in a severe environment, including polluted air and seawater, it is necessary to develop a durable special wetting surface with excellent corrosion-resistance. Here, we report a new st...

متن کامل

A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold.

We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate...

متن کامل

From superhydrophobicity and water repellency to superhydrophilicity: smart polymer-functionalized surfaces.

pH-responsive surfaces, reversibly switching between superhydrophilicity and superhydrophobicity/water repellency, are developed by "grafting from" a pH-sensitive polymer onto a hierarchically micro/nano-structured substrate. We quantify the water repellency by investigating the restitution coefficient of water droplets bouncing off the surfaces. The water repellent state requires appropriate h...

متن کامل

Strain-controlled switching of hierarchically wrinkled surfaces between superhydrophobicity and superhydrophilicity.

Recent years have witnessed intense interest in multifunctional surfaces that can be designed to switch between different functional states with various external stimuli including electric field, light, pH value, and mechanical strain. The present paper is aimed to explore whether and how a surface can be designed to switch between superhydrophobicity and superhydrophilicity by an applied strai...

متن کامل

Superhydrophilic Surfaces for Antifogging and Antifouling Microfluidic Devices

Superhydrophilic surfaces are investigated for their potential to provide antifogging and antifouling properties for microfluidic devices. Two types of exemplary superhydrophilic surfaces are prepared, including polyester films treated by oxygen plasma and indium tin oxide-coated glasses treated by an electrochemical method. The superhydrophilicity of the treated surfaces presented herein is co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017